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MOLECULAR TRANSFER 

V. F. Potemkin UDC 532.526 

Universal relations pertaining to molecular transfer of momentum, heat, and mass 
are derived on the basis of a special mathematical transformation. 

Molecular transfer occurs widely in nature as well as in technology and, therefore, 
knowing the laws which govern it is particularly important. The laws governing the molecular 
transfer of momentum, heat, and mass cannot be derived through solution of known differential 
equations, because the system of these equations is generally not a closed one. Relations 
based on semiempirical theories or on processing of experimental data, on the other hand, con- 
tain empirical constants and are not general. 

In [i, 2] universal relations for molecular transfer of momentum and heat have been de- 
rived with the aid of a special mathematical model. In this study those results will be 
refined and extended. 

The region of molecular transfer will be defined as 

x ~ x ~ x ~ o ,  6(x)~y~a0(x)>0 (1) 

where x is the longitudinal coordinate measurable on the solid surface (wall); y, transverse 
coordinate measured from the wall; 6(x), upper limit of this region (e.g., thickness of the 
turbulent boundary layer); and So(x), lower limit of this region (thickness of the laminar 
sublayer). 
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One can obtain universal relations for molecular transfer by transforming (normalizing) 
the function of two variables defined in region (i) into a generalized single-valued function 
U of one generalized variable R(x, y). 

Since the thus obtained function U must remain a generalized one of parameters of the 
transferred substance and R must remain a generalized coordinate, hence 

U = U(u, uo, u~), (2) 

R = R(y, ~o, ~), (3) 

w h e r e  uo = u ( x ,  6 o ( x ) )  and  u 6 -- U(X, 6 ( x ) ) .  

It follows from expressions (2) and (3) that the normalization can be reduced to certain 
mathematical operations on two groups of functions: u(x, y), no(x), uS(x) and y, ~o(x), 8(x). 

We will introduce operator P performing on function u defined in region (1) the trans- 
formation 

Pu - u -- u~ u~ -- u~, (4) 

In the U(R) representation two values of R must correspond to curves 8, 8o and two values 
of U must correspond to curves us, no. According to expression (4), operator P meets this 
requirement. 

As function U one can select a simple combination of u, no, and u~ satisfying the rela- 
tion (4), inasmuch as not the form of expression (2) by the relation U(R) is sought. One 
can, therefore, let 

U = Pu. (5) 

According to expression (5), 8o is the scale of the y coordinate. 

In the selection of 6o as scale for y it is possible to perform on the group of functions 
y, 6o(x), 6(x) the mathematical operations 

Y-~ Y/~o -~  / ( /6o)  - *  e f  ( /~o),  (6) 

~-+ f ( ~ ) ~  Pf (~), (7) 

where f is an arbitrary function. 

We do not consider here transformations of the y + (y -- 8o) + f(y -- 8o) + Pf(y -- 60) 
kind, inasmuch as this would exclude from the analysis functions f(z) not defined at z = 0. 

The sought generalized relation U(R) must not depend on the possible route by which it 
is established, according to (6) or (7), and must thus be invariant with respect to trans- 
formations. Therefore, 

Pf (/80) = Pf (~,). (8) 

From here it is easily established that function f (z) can only be of one of the two kinds 

f t  (z) = const z ~ -[- const,  ( 9 )  

f2 (z) - :  const In z~-b  const, ( lO)  

with the argument z equal to either y or y/6 and n > 0. 

Relations (i0) and (4) yield 

R = Pfe (z) -- In (y/8o) (ii) 
In (8/8o) 

Relations (9) and (4) yield 

R = Ph (z) Y~-- ~g (12) 

Expression (ii) differs from expression (12) in that it does not contain the parameter 
n. Therefore, one must select expression (ii) for K and expression (5) for U in the gener- 
alized relation U(R). 
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It has been demonstrated in [i, 2] that 

dU 
- - . =  1, (13) 
dR 

u = R, (14) 

do - i ,  (z5) 
dR 

@ = R, (16) 

where U = (u -- Uo)/(u a -- Uo) and e = (T -- To)/(T o -- To). 

Expressions (13) and (15) represent generalized relations describing molecular transfer 
of momentum and heat. 

Analogously one obtains the generalized relation for molecular transfer of mass 

dC 
--= 1, ( 1 7 )  
dR 

and its integral 

is introduced and operations (6), 
transformations 

c = R. (18) 

Here C = (c -- co)/(c8 -- Co) and c is the mean concentration of the substance. 

The results ought not to be different when the operator 

p , .  _ " - -  "6 U '  (19) 
Uo - -  U5 

(7) in selection of ~ as scale for y are replaced with 

As a result then we have 

From relation (14) we obtain 

and from relation (23) we obtain 

Relations (24) a n d  (25) yield 

+ + 
Here P6 = in(8+/6+)/(u~ --uo). 

y - +  y/c) - ~  f (y/c)) - ~  P ' f  (ts/6), 

y ~ / ( y ) - - +  P ' / ( y ) .  

(20) 

(2l) 

R' In (y/C)) (22) 
In (c)o/5) ' 

U ' =  O'. (2a)  

u§ = 1 ln(g+/c)+) q- uo +, ( 2 4 )  
W~ 

I 
u + - -  in (y+/&) -5 u+ . ( 2 5 )  

in (9+/6 +) In (y+/C) +) ( 2 6 )  

Consequently, the function 

,I* - In (y+/c)+) u+ - -  u + (27) 

is invariant with respect t o  simultaneous replacement of uo, 8o with u+, 6 and thus does not 
depend on the choice of scales. 

It is convenient to replace expression (14) with 

W" = ~ ,  ( 2 8 )  

since ~ = ~(x, y) and ~8 = ~6(x). 
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From expression (28) we find that when 

~'~ = #o (29) 

there holds true the equality 

~6 ~6,  (30) 

= 7 - -  = where ~6 in 6+/(u i), and ~8 in o/(uo -- 1). 
I 6 + + 

It has been demonstrated in the first study [i] that at a zero pressure gradient in the 
turbulent core we have 

# = #6 (3l) 
or 

d = #, (32) 

where ~ = in y+/(u +- i); U = (u +- l)/(u~-- i), and R = in y+/ln 6 +. 

On the diagram in Fig. 1 expression (32) is compared with experimental .data from another 
study [3] pertaining to flow of mercury through a_a__~ipe in a longitudinal magnetic field at 
various values of the Hartmann number NHa = Bdgo/p~. Here B is the magnetic induction; o, 
electrical conductivity; and d, tube diameter. The experimental data appear to agree satis- 
factorily with expression (32). 

The graph in Fig. 1 indicates that calculation of such a flow on the basis of the pro- 
posed mathematical model [I, 2] is rather simple, inasmuch as for determining the distribution 
of mean velocity and the shearing stress at the wall one must know only the relation ~8 = 
~6(NHaa/NRe6) (where NRe ~ = u8~/9) in addition to ~, p, 5, and u~. 

On the diagram in Fig. 2 expression (32) is compared with experimental data of still 
another study [4] pertaining to turbulent flow through the initial segment of a rough pipe 
at various values of the ratio x/d, where x is the distance from the tube entrance. The 
experimental data here appear to be correlating satisfactorily with the theoretical relation 
(32). 

The calculation of such a flow is based on known ~, p, 6, u6, and relation ~ = ~(x/d). 

Accordingly, ~6 and T6 are critical functions for a turbulent boundary layer. 

The graph in Fig. 3 depicts the relatio n ~ = ~6(6 +) according to data in study [5] 

on turbulent flow in a smooth pipe. Evidently ~ § const = 0.34 as 6 + § -. With sufficient 
accuracy, moreover, one can assume that at 6 + ~ l0 s will be 

~6  : In 8 + : 1/3. ( 3 3 )  

According to the Blasius method for a laminar boundary layer [6], one obtains 

6+/u~ = 1.60. (34) 

The graph in Fig. 3 indicates that function ~ calculated for a laminar boundary layer 
according to expression (34) (curve 2) intersects function ~ for a turbulent layer only with- 
in a narrow range of relatively small 6+. Curve 3 here corresponds to the outer segment of 
a typical Blasius profile, which constitutes a continuation of the integral in Newton's law 
at the wall 

u ~ = y+ ( 3 5 )  

and is bounded b y  curve 2. 

The graph in Fig. 3 is convenient in that it not only indicates the flow conditions 
(turbulent or laminar) depending on the value of 6 + but also the profile of mean longitudinal 
velocity. 

Expressions (14), (16), (18), (28), and (31)-(33) simplify the characteristics of molec- 
ular transfer. They become particularly convenient in the case of simultaneous effects of 
several physical factors on the molecular transfer process. 

With respect to relation (31), the molecular transfer process will be characterized by 
different values of =he critical function ~, which depend on the influencing factors. In 
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Fig. i. Distribution of generalized dimensionless velocity 
U(R) at Reynolds number NRe = 4.25.10 ~ and various values of 
Hartmann number NHa: i) NHa = 0j ~ = 0.31, 2) 279 and 0.29; 
3) 390 and 0.27; 4) 502 and 0.25; 5) 614 and 0.23; 6) ac- 
cording to relation (32). 

Fi$. 2. Distribution of generalized dimensionless velocity 
0(R) of turbulent flow in initial segment of rough pipe: i) 
x/d = 1.5, T6=0.58; 2) 3.5 and 0.46; 3) 9.5 and 0.44; 4) 25.5 
and 0.44; 5) according to relation (32). 

order to establish quantitative relations for molecular transfer occurring under complex con- 
ditions, it is necessary to know the relation ~ = ~(K~, Ka, ..., Kn), where any of param- 
eters K i characterizes the dependence of molecular transfer on some influencing quantity such 
as, for instance, the magnetic induction in the case of an electrically conducting fluid. 

Let ~o be defined by expression (33), i.e., 8 + ~ ~. As has been established earlier 
[i], 

#6~ (K~) = ~6o -- In f (KO, (36) 

~6~ (K2) = ~6o - -  In f (g2). (37) 

In the case of simultaneous dependence of the molecular transfer process on parameters K, and 
K2 we have 

When 
xF6i2 (KI, K2) = xP,5o - -  In f (Ki, Ke). 08) 

then 

f(G, K~)=f(KOf(G), (39) 

~a1~ = ~o -- In f (KI) -- In f (K2) (40) 

Condition (39) corresponds to a weak correlation between parameters K, and Ka. 

It follows from relation (40) that, when condition (39) is satisfied, the relation ~ = 
~6(KI, K~, ..., K n) can be determined according to the principle of superposition, which will 
greatly simplify calculation of the characteristics of molecular ~ransfer under complex flow 
conditions. It is also important that, on the basis of relation (31), the principle of super- 
position can be applied to final characteristics (~) as well as to instantaneous ones (~). 

As an example we will consider molecular transfer in rotating channels during accelera- 
tion of the stream due to change in their cross sections. On the basis of the model described 
here we obtain, analytically, the conditions of conservation of turbulent heat and mass trans- 
fer in such a system. During acceleration of the stream, according to experimental data [7], 

~6o--~(K):=--CIK , (41) 

where the parameter K = (~/u~)(du6/dx) characterizes the pressure gradient. Here CI = 1.2. 
i0 ~. As the parameter K increases, the stream becomes laminarized wi=h ~6(K) > ~6o. When 
channel rotates at an angular velocity m about the z axis, then, according to experimens 
data [8, 9], 
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Fig. 3. Dependence of ~ on y+: I) according to ex- 
pression (35); 2) according to expression (34); 3) 
typical Blasius profile; 4) values of ~ according 
to data in [5]. 

~60 -- #6 (~) ~ -- C~ NRo. (42) 

with the rotation number NRo = 2m6/u6 and Cz = 2/3. As the angular velocity m decreases 
(m < 0), the stream becomes laminarized with ~(~) < ~o. 

Parameters K and NRo are weakly correlated to each other�9 Therefore, it follows from 
relations (40)-(42) that, although a turbulent stream becomes laminarized as K increases (or 

decreases), it is possible to make it remain turbulent according to relation (31) by simul- 
taneously affecting m(~ < 0) and K(K > 0). This is important in rotating systems where the 
intensity of heat transfer must not decrease during lamlnarlzation. It is then necessary 
that the relation 

K/NRo= Cs/C i (43) 

hold true. 

The generalized relations which have been obtained here for molecular transfer of momen- 
tum, heat, and mass are universal and simplify calculation of its characteristics. 

NOTATION 

u, mean longitudinal velocity, m/sec; T, mean temperature, ~ 9, kinematic viscosity, 
m2/sec; p, density, kg/mS; 7, shearing stress, N/m~; u, = TwO/p, dynamic velocity, m/sec; 6, 
thickness of the boundary layer, m; ~o, thickness of the laminar sublayer, m; y+ = yu,/~, 
dimensionless space coordinate; u + = u/u,, dimensionless velocity; , = (u + --u~)/(u~ -- u~), 
generalized dimensionless velocity; NRe , Reynolds number; NHa , Hartmann number; subscripts: 
*, stream parameters at y+ = i; 8, stream parameters at y = 6; 0, stream parameters at y = 
6o; and W, wall. 
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DEVIATION OF THERMAL ANEMOMETER SENSORS WITH SAGGING WIRES 

FROM THE COSINE LAW 

I. L. Povkh, G. P. Eremln, 
and A. M. Novikov 

UDC 533.6.08 

The authors describe a calculation method and determine numerical values for the 
influence of the sag of the measuring wire of a thermal anemometer sensor on the 
deviation from a cosine law. 

In determining the absolute magnitude of the velocity vector in three-dimenslonal flows 
using thermal anemometer sensor wires one measures the magntiude of the effective component 
of the flow velocity, which influences the heat tranfer between the wire and the flow. These 
quantities are related by the cosine law [i]: 

Y~ = V c o s &  ( l )  

When one allows for the influence of the longitudinal velocity component on the heat 
transfer the cosine law takes the form [i] 

V~ = V (cos 2 6 + k 2 sin 2 6) ~/~ . ( 2 )  

These relations are derived on the assumption that the measuring wire of the thermal anemometer 
sensor is straight. However, this condition does not hold in actual sensors. The deviation 
of the measuring wire from the straight condition stems from technical causes in the sensor 
manufacture, and also from the linear thermal expansion of the wire. 

We now derive the relation between the magnitudes of the effective component and the flow 
velocity vector for the case of a sagging wire, when the wire forms the arc of a circle. The 
effective component of the velocity vector in the segment of arc QP of the measuring wire DQA 
(Fig. i) varies from V61 to V6~. The area of the figure FTQP is 

Using the notation 

we obtain 

SFTQP = SOFT - -  SOPQ. (3) 

o p  = O Q  = r, (4) 

PF =Vst, 
6~ 52 62 

SFTQ p = 1_~ (F qU Vat)2 d6 -- i rZd6 ----- rV~ q- T V~lz dS. 
2 2 j 

6, 5, 5~ 

The average value of the integrand is determined by the relation [2] 

(5) 

(6) 

, i8o S( 1 )  
.c. (~--60a -~ 

5~ 

(7) 

Denoting the right side of Eq. (7) by I, we finally obtain 
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